Material cerâmico converte energia solar em combustível veicular

010115131122-forno-termossolarConverter energia solar em combustível que pode ser estocado e disponibilizado para o abastecimento de veículos já é realidade, pelo menos em laboratório.

O experimento, realizado pela equipe da Dra. Sossina Haile, do Instituto de Tecnologia da Califórnia (Caltech), nos Estados Unidos, abre uma nova via para a produção sustentável de energia – um dos maiores desafios da atualidade.

A pesquisadora esteve no Brasil apresentando os últimos resultados de suas pesquisas, durante a 6ª Conferência Internacional em Eletrocerâmica, realizada em João Pessoa, na Paraíba.

“Para realizar a conversão de energia, utilizamos um material cerâmico, o óxido de cério (CeO2)”, disse Haile. “Aquecido a altas temperaturas, ele libera oxigênio (O2), sem perder sua estrutura. Isso é pura termodinâmica: manutenção do estado de equilíbrio. Resfriado, volta a absorver oxigênio.”

“Se o resfriamento ocorrer em presença de vapor de água (H2O) ou gás carbônico (CO2), o oxigênio será retirado das moléculas de uma ou outra dessas substâncias, e a reoxidação resultará na liberação de hidrogênio (H2), em um caso, ou de monóxido de carbono (CO), no outro – ambos com grande potencial como combustíveis,” complementou

Cério e zircônio

Para aquecer o material, a equipe de Haile usa um reator que consiste em uma cavidade termicamente isolada, cuja tampa, de cristal de quartzo, concentra a radiação solar – um forno termossolar.

O óxido de cério, formando uma peça única e porosa, reveste internamente o forno.

O oxigênio liberado após o aquecimento flui por uma saída no fundo do recipiente. E os gases (H2O ou CO2), que resfriam o óxido de cério, entram radialmente na cavidade, atravessando os poros do material. Pela mesma porta de saída, escapam o hidrogênio ou o monóxido de carbono, ejetados após a reoxidação.

“Uma pergunta específica que fizemos foi: como modificar o material de modo a aumentar a eficiência do processo e operar em temperaturas mais baixas?”, contou Haile.

A pergunta é muito relevante do ponto de vista tecnológico, uma vez que a diminuição da temperatura de redução do óxido favorece bastante a construção do reator.

“Verificamos que, agregando zircônio ao óxido de cério, é possível liberar o oxigênio com temperaturas menores. Em vez de operar a 1.600 ou 1.500 graus Celsius, é possível operar a 1.450 ou 1.350 graus – o que é muito vantajoso,” disse Haile.

“O zircônio possibilita baixar a temperatura porque torna a liberação de oxigênio da estrutura mais fácil do ponto de vista termodinâmico. Por outro lado, a cinética da reoxidação posterior fica mais lenta”, ponderou a pesquisadora.

Foram realizados, então, vários testes, de modo a chegar à porcentagem ótima de zircônio para favorecer tanto a temperatura quanto a cinética. “Constatamos que com um acréscimo de zircônio da ordem de 10% a 20% é possível atender a ambas expectativas”, afirmou.

Apesar dos sucessos obtidos, a equipe continua trabalhando, uma vez que a temperatura de operação do sistema ainda é alta demais para aplicações práticas e é necessário melhorar a eficiência geral do processo.

Fonte:Inovação Tecnológica                                                                                                           logopet (1)

1008jia2001